Refractories and Insulation for the Heating Equipment Industry

Presented by:
Gary Deren
The Unifrax Corporation
February 5, 2003

DOE/IHEA Materials Forum
Oak Ridge National Laboratory
Oak Ridge, TN
February 5 and 6, 2003

Agenda

- Factors Impacting the Industry
- Standard Materials of Construction
- Emerging Refractory Technology
- Barriers to Acceptance
- Future Refractory Developments

Factors Impacting the Refractory Industry

- Diminished Customer Base
- Improved Materials
- Environmental Regulations
- Global Competition
- Business Model
- Eroding Expertise

Principal Types of Refractories

Brick and Special Shapes
 Advantages
 Optimum strength
 High density
 Low porosity

No curing treatment needed

Disadvantages

Joints

Labor costs

Installation (cost and time)

Availability

Variable dimensions and warpage

Internal defects possible

Refractory Concrete (Castables)Advantages

Fast installation
Low labor costs
Availability
Joint-free (monolithic)
Anchored installation
Mechanized placement
Low permeability
Fiber addition possible

Disadvantages
Water/property relations
Low hot strength
Forms required
Slow heat up required

Ramming Mixes

Advantages

Joint-free (monolithic)

High density

Availability

Fiber addition possible

Disadvantages

Laminations

Curing treatment needed

Variable density

Forms required (strong and

complex)

Dry, Heat-Setting Monolithics
 Advantages

 Joint-free
 Long shelf life
 Rapid installation and startup availability

Disadvantages
Curing is critical
Forms required
Laminations possible
Installation sensitive

Gunning Mixes

Advantages

Rapid installation (hot or cold)

Joint-free (monolithic)

Availability

Anchored installation

Mechanized placement

Fiber addition possible

Disadvantages

Variable density

Installation skills required

More material needed (rebound

losses)

Curing treatment needed

Plastics

Advantages

Joint-free (monolithic)

High density

Anchored installation

Fit odd areas

Fiber addition possible

Disadvantages

Low hot strength

Installation time

Possible lamination

Limited shelf life

Ceramic/Soluble Fiber ProductsAdvantages

Low heat loss (energy savings)
No thermal shock problems
Installation innovations
Joint-free
Addition to existing structure
Lightweight

Disadvantages
Permeability
Low abrasion resistance
Low mechanical strength

Emerging Refractory Technologies

- Improved Basic Refractories
- Growth of Monolithics
- Improved Binder System
- New Placement Techniques
- Fiber Additives
- Coatings
- Low-K Backup Linings
- Exotic Materials

Barriers to Acceptance

- Market Awareness
- Material Price vs. value in Service
- Vested Interests –Labor
- Risk Aversion
- Potential Health Concerns
- Education
- Equipment
- Fuel Costs
- Capital Funds

Factors Affecting the Future of the Refractories Industry

- Reengineered Industrial Processes
- The Refractory Paradox
- Improved Cost Analysis
- Increased Productivity
- Reduced Down Time
- Improve R.O.C.E.
- Application Driven Supply
- Business Model
- Recycling Afterservice Materials
- Environmental Regulation
- Energy Costs

Refractory Material Development 2013 and Beyond

- Precast Shapes
- Slag Line Castables
- Refractory Composites:Barrier/Structure/Insulation
- Advanced Reinforcement
- Reduced Crystalline Silica
- User Friendly Monolithics
- Robotic Gunning

Insulation Materials Development 2013 and Beyond

- Crystalline Silica Free Fibers
- Improved Soluble Fiber properties
- Monolithic Fiber Products
- Hot Patch materials
- Application specific chemistries
- Flux Resistant HotFace
- Improved Fiber binders/Enhanced Properties
- Improved Thermal Stability

Target Applications for Future Development

- Steel Transfer Ladles
- Sulfur Plant Refractory